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Abstract

‘IIMgew i&n@icatkm pmbkm isthe problem of intqrcting nuckotidc sequences by computer,

in order to provide tentative annotation on the location, s~ and functional class of

protcin+oding genes. This problem is of sclkvidcnt importance, and is * kn being fully

Solve& particularly fm higher eukaryotcso Thus it is not surprising that the number of algorithm

and sofhvarc developers working in the ma is rapidly increasing. The present paper is an ovuview

of the !icl& with an emphasis on CLlkMyOtC&for such developers.

Introduction

In a rapidly moving field it is often easy to trace individual threads of work, but difficult to gain an

ovcrvkw.’’flwt itpurposco fthisrcview istoprovidc aconcisc dimctmytoboth standard and

newer tcchniqucs, and so albw new developers to more quickly come to the point where they can

make their own original contxibutkm

The second puqmsc is to give somt perspective on the structure of the field and cumcnt research

direction~ This includes summarizing the high points of progress to date in each of several areas,

evaluating what seem to be the most productive current lines of inquiry, and attempting to predict

whsfc the most useful dcvclopmcnts will come ftorn in the future While large parts of this

pcrspoctive arc shared by many practitioners in the field, the overall analysis nccuwily represents

the pcrsond views of the author.
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A number ofr+ted reviews exisL A few of the more rczent works on sequence analysis in general

w [A- Fields and Venter 1994], [Doolittk 1990], [Gclfand 19’95], [Gindikin 1992],

[Gibskov and Dewreux 1991], [Griffin and Griffin 1994], [Konopka 1994], waterman 198%],

and ~aterman 1995]. On-line bibliographies of publications relevm! to analysis of nucleotide

sequences are maintained by A. Bairoch (SEQANALRE17 URL http://expasy.hcuge.ch on the

Wmld-Wide Web) and M. Gelfand (FANS-REE ftp to irnb.imb.ac.ru; in direaory BIBLIO).

Staden ~19X)] and Gelfaml [1990b] give overviews of the gene identikation problem Fickea and

Tung [19922]review rocognhble statistical re@arities in protein coding regions. Doolitde [198@

and Gish and States [1993] discuss the interpretation of similarity searches in the context of gene

identification.

The present review is prhnady a guide to current tdmiques relevant to Mum developmen~ rather

than being a guide lo current tools. llm review is mostly resrncted to published work, though

unpublished developments may be mentioned briefly. In most sections coverage is limited to

techniques that are either widely used, or which seem to us to be particularly impcmant for future

developments. Although the number of papers cited is already large, there are doubtless many

others that should have been included. Experimental approaches to gene identification are

assuming an increasing importance. These will not be coved here, but the computational

developer must stay abreast of the rapid developments in experimental techniques as well. For a

recent overvkw see [Chumh el ui. 1994].

The paper begins with a definition of the problem. The main body of the paper consists of an

overview of computational tools and techniques, broken into six (somewhat arbitrary) categories:

● Sequence similarity search

“ Statistical regularities in exons

● Signals: intraiuction

● Signals: basal gene biochemistry

“ Signals: regulation of gene expression

● Gene syntax and integmion of information
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In each of these categories the state of the field is summarized. In the last two sections, some higher

level issues arc considered.

Definition of the problem

Sequence (old or new) to biochemistry

A hmewmk for much of the work in computational analysis of nucleaidc sequences may k had

by seeing this work as directed towards the eventual goal of automatic annotmion: automatically

prcducing a draft feature table that is as complete, accurate, and interesting as possible. Sequence

“features”, in the canrrmn usage of the tcnn, include many kinds of information; the core pmbiem

i.n automatic annotation is to describe the sequence in functional mm.s. Concretely, this means to

discover all biochemically active sites in a rcgiun of a DNA/IWA molecule, and describe the

associated reactions and reaction products.

The abili~y to predict the biochemisay of a new sequence -- one under design, say, by a

pharmaceutical company - in a specific context, is of just as muc$ interest as the ability to discover

the function of naturally wcurring genomes. One very important long term goal of nucleaide

squence analysis, then, is to generalize from the biochemistry of natural genomes to give rules for

designing new genes and genomes.

The current gene identification problem

Although the identification of protein coding genesis clearly influenced by the knowledge of other

significant features of the squence, the difficulty of considering the automatic annotation problem

as a logically integrated process has caused the gene identification problem to usually be

considered independently of most other squence analysis. Most of the rest of the paper will follow

this tradition.

Eukaryotic gene regulation is complex and is just beginning to be understood, It still se-emsa rather

difficult goal even to predict from squence the course of the key biochemical reactions of gene

expression: transcription, splicing, and translation. At the present time the SUCCLSSof gene

identification algorithms is measured in terms of the degree to which hy comedy predict the

amino acid sequence of protein products and, perhaps, some hint of product function.
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Computational techniques

overview

scctkMM that fdk 8WvCy thC W’iOUS COmpUtdd tCCh?@IESrck~ant to gcnC

idcmtificatiom In the 6rst five sections, mthods for rccogniting some panicub aspcc~ or

componcn~ of genah arc covered. I*, last section then covers mcthmls of integmting all the

cvkknccand cmponcnts into higher level Statcnwnts about gelwSS

Time isan unaging issm possib!y of fundamental impomwe , in the &velopmcnt of techniques

fm gene idcntifwsukm, which might best be expressed as the tension between template methods

and kokup IIMthods(termed “imrimic” and “exbinsic” approaches in ~, Kcnmim and

Rudd 194] and [Borodovsky, Rudd, and Koonin 1994]). ‘Ibmplatc methods attempt to compose

UllXeorksscancise and ekgant descriptions of pmmtypc objccm and then kkmify genes by

matching to such pmtypca. A good rxampk is the usc of consensus sequences in identifying

pmmotcr elements or splice sites. Lookup methods, on * other hancL attempt to identify a gene

or gene cmponcnt by finding a similar known object in available databases. An excellent exampk

ofa lookup method is searching fm genes by trying to 6nd a similarity between the sequence under

analysis ad the contents of the sequence databases.

Much of the work that cams out of a mathematical or computational background (including

pattern recO@tim in pmicular) focuses on deriving pmtotypc descriptions from the data. This

-~ O* ~- immnt con~butio~ ~ ~ ~~-gs but ~~y l-v= out

impmtant exceptions and ambiguities, most likely because gcnomcs arc not elegantly designed

from scratch, but arc a collection of contraptions honed by experience. Tlms as the field has

developc4 and as nmkcular biological data has increased, lookup rmsthods, which simply mly on

what iq without attempting to summarize it neatly, have gained in impmtancc.

Finally, it should be noted that the field as a whole is making a transition fimn studying primarily

componcnra of genes to studying genes and genomcs in their entirety. ‘TIIusthe issue of choosing
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an appropriau language in which to express and integrate the knowledge gained from the

component calculations is one of the most active areas in computational gene identification.

Sequence similarity search

One of the oldest nwthods of gene identification, based on sequence conservation due to functional

umstraint, is to search for regions of similtity between the sequence under study (or its conceptual

translation) and the sequences of known genes (or their protein products). A rcccn~ large scale

example of the application of this method, clearly illustrating both its ~wer and its difficulties,

may be found in ~obison, Gilbert, and Church 1994].

A clear advantage to searching for genes by similarity is thag if a significant similarity is found, it

is likely to yieifl clues as to the fimction, as weU as the existence, of the new gene. In addition, if

the search is carried out at the amino acid, rather than the nuclatide, level, the additional

advantage may be had of lowered sensitivity to tie “noise” of neutral mutations. The obvious

disadvantage of this method is that when no homologies to the new gene are to be found in the

databases, similzuity search will yield little or no useful information.

The question naturally tises, then, of the likelihood that the databases will contain a homcdogue

of a gene awaiting discovery. Seely et d. [1990], in an early attempt to answer this question, took

one half of GenBank release 56 as a test set, introduced “mutations “, “introns”, and “intergenic

DNA” to make the test set resemble new geaomic data, and searched for genes iu this test se! by

comparing it to the remaining half of GenBank as a reference set. In this experiment, they found

that approximately three-quarters of the genes could be clearly identi.fd. Thus one tight hope that

the majority of new genes could be found by means of simple similarity searches in the database.

When the comple!e sequence of yeast chromosome IN [Oliver et aJ. 1992] was fit reported, 26%

of the putative protein products (conceptual translations of all open reading frames over 300 bp in

length) were found m have significant similarity with some other known sequence. Similarly, in

repoting analysis of three cosmid sequences from C. elegans, Sulston et al, [1992] state chat

roughly a third of the putative genes show clear homology to sequences already in the databases.

Both of thesu estimates have rather large error bounds, as the list of tentative genes depwds

primarily on computational, not experimental, evidence, Yet these studies do seem to suggest that
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the conclusions of the Secly ef d. study am perhaps too optimistic. 140bably the disparity betwscn

the simulatia~ study and the results of actual genomic sequencing is due to the biased nature of the

databases. For cxampk, lmth of the halves of GenBank used in the cxpri.trcnt of Seely et uf. are

much richer in highly expressed genes than is a eukaryotic gcnome in toto.

One o~eridl ksson from along line of work studying amino acid ~uence nmtifs and bkxks 6om

related sets of proteins (~. [Gtibskov, NfAachlan, & Eisenkg 1987], ~sfai, BhagwaL Pusfai,

& Roberts 1989], [Smith, Annau, & Chandresegaran 1990], [Smith & Smith 1990], ~enik~ &

Henikoff 1991], [Bairoch 1992], and [Ogiwara etid.1992]), is that database searehes seem to be

mtxh more sensitive if carried out with meaningful patterns such as motifs or profile mauices.

Wkn BOrk et d. [199kb] StUdkd the yeast C~ III wquence using nmre penniss.ive

cut-off wxes, multiple alignment methods, and motif searches, 42% of the putative genes were

found to be similar to a hiown sequence or motif. her, KooniI, et uf. [1994] revised the list of

putative genes and again used rh: most nzent and sensitive known algorithms, ad found that61%

of dw putative proteins exhibited significant similarities to known proteins or motifs. This increme

is due in part to revisions in the list of putative proteins, {inpart to the databases becoming more

complete, and in patt to improvements in computational methods.

In another vein, current efforts to sequence (at least figments of) all transcribed sequences fim

a nwnlxr of genomes [e.g. [Adams et UL 1991]) concentrate much of the genomic information

necessary for gene identification. Boguski, Tolstoshev, and Bassett [1994] collected the 32 human

disease gene sequences that have been positionally cloned to date and found that 85% of them

showd homology to an entry in tie dbEST colkction [Boguski, Lowe, and Tolstoshev 1993] of

expressd sequence tags. This is a small sample, but the indication still seems strong that cDNA

sequence collections will bean impomnt resource for gene i~entificaticn. Note however that for

most of the sequences in dWST, the only information available is hat hey are transcribed;

mapping and functional data will surely come, but arc presently aecunndating much more slowly

than the sequences themselves.

How fast will the fraction of genes identifiable by similarity search go up? Green el al. [1993] (see

also [Claverie 1993s] md [(keen 1994]) compare recently determined sequences both to each

other and to older sequences in the databases, and conclude that(1) most ancient conserved ngiom
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(or ACRS roughly defhed as regions of protein sequences showing highly signii.,ant hocnologies

~ phyla) of the protein universe are already known and maybe f~nd in current datab~ (2)

roughly 20S0% of newly found genes contain an ancient consemed region that is represented in

the databases (~. ako [Bomdovsky, Kmxti, am! kudd 1994]), and (3) ~ly eXpfCSSCdgenes me

less likely to contain an ancient conserved region than modemtely or highly expressed ones.

lhken togetk, these results seem to suggest that on the order of one half of all new genes msy h

discove ad perhaps sorm functional infosl.nation ~ on the basis of similarity to

bnq~mtiqti titis-ntimtiW mri*. ~mtilqervtic&ti

non-ACR-taining proteins, however, the rise will likely be rather slow.

Sequencing errors, particulady frameshift c- can be a serious problem for gene identifkation

by similarity search. Gish and States [1993] discuss the effects of such mm, and the interpretation

of BL4STX search results. Shavlik [1994] shows how to turn the difficulty ‘madvantage, piecing

together matches from different frames to both locate genes and detect the sequence errors.

Ciaveric [1992] also discusses practical aspects of similarity searching, in particular providing a

means to eliminate the most common sauce of high scoring similarities nor due to gene function,

namely repeats.

Statistical regularities in exons

At the core of most gene recognition algorithms are one or mom coding meusums --

which calculate, for any window of sequence, a number or vector that measures

functions

attributes

correlated with protein coding function. Aggregate properties of such function values on culing

regions thus form templates for exons in general. Common examples of coding measures include

the calm usage vector, the base composition vector, and some type of fourier transform of the

sequence. ‘llese measures, which have a long and rich history, have been reviewed, synthesixd,

and uniformly evaluated in ~ickett and Tung 1992] (c$ also [Gclfand 1990b]). me measums

tested there are “h following (for more details and full citations see the review: in the definitions

that follow, the “test-ccxlons” of w, arbitrary sample window of sequence are defined as the

successive non-overlapping trinucleaides of tht window, beginning with the first base).

Codon Usage Measure: the (M element vector givLg the frequencies, among the test-codons, of
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eachoft&64 possibkeodons.

Hexamer-n Measurc(forn=dl, 1,2): thecountsof allhexamers offsetbyn frornthestaning base

of a teat. * (The Hexa.nm-0 measure gives &o&m counts).

Hexamer Measure: the fm.quency count in the window of all hcxamers.

Open Reading Fmme Measure: the length of the longest streteh of sense test-codons in the window.

Amino Acid l.hge Measure: b 21-vecta obtained by translating the sample WidOW of

q-beginning M* h fit k. a=oxhg to h appropriate genetic code, and counting the

frequencies of the 20 amin acids and “stop”.

Diamino Ackl Usage Measure: the 441-vector given by translating the window and cuunting all

the (ovczlapping) dipcptides (including “stop” as an “amino ecid”).

Stability of Hydmphobicity Measure: Fmt define he information value of a codon as

+lgPi=l~j@i”4j~hj* w~~ nj is we numb of sen= mutations of the eodon, pi is the

probability of thc i* mutation, and dij is the difTerenee in hydrophobieity caused by the mutation.

TIMinformation value of a window, which we take as the Stability of Hydrophobicity Measure, is

then the average information value of the tes!-eodons in that window,

C%nqnsition Measure: [f(bj)], where for each base b = A2C,G,T and each test-c-don position

i=l ,2,3, f(b,i) is the frequency of b in position i.

Codon Prototype Measure: Let p(b,i) be the probability of finding base b at position i in an actual

codon. Let q(b~) be the probability of finding nuclemide b at position i in a triruclcotide that is not

a codon. Consider p and q to be 4x3 matrices, with rows indexed by the bases b= A,C,G,T. Let B

be the maaix with element (b,i) = p(b,i)-q(bj). B cart be considered a linear function on

trinucleotides in an obvious way: each base b of a trinucleotide may be considered a column vector

of a 3x4 matrix, with a 1 in the bm row. Then B of that trinucleotide is the dot praiuct of B and the

matrix representation of the trinucleotide. Elementary calculus shows that, up to a multiplicative

constant, B is the matrix which maximizes the average of the difference B(codons) - B(noncculing

trinuckotkies). We deiine the codon prototype measure to be the sum, over the window, of the dot
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productof Bandthcestadonsof thctiIuIow

Pudkm Asymneny Measure: Define p(b)= ~(f(bJ))/3 and aqmm(’b) = Z(f(bj) - p(b)? *

dcftnc the Pn6ition asymrmtxy masure to be [asYLxu@A)sy.uuXCmsyU@@sWUMIION

EntropyMeasure:Given f(bj) as abow ** emopy(i) = ~f(bj)~(f@J)]. U * ~ V~UCS

of entropy(i) are signifwnt.ly different a coding region is prdctr& and the one with the largest

mc-ti-h~ti wbw-ptiwkfi mtimqy~m

be [enmfilhmqy@)snqy(3)l.

Autocorrclmion Measttre:Id auto(lxi) be the numberof pairs of base b with i humming bases

Forthc ~w~fa~nmkt i-h~ex~mti-isti b-ti

al- giving the matrix [auto(bJ)/(wklow_leq@-i- l)@equency_of_b)2], where b=A.CG,T and

i+,...9.

Fourier Measure: k the window be 2M long. Let EQ(x,y) be the function which is 1 if x=y and O

othenvise. Define the nmFotuiercoefficient (dropping the constant l/4M2 for simplicity) by: F12(n)

= ~ZJEQONW Qbase m-p))lex. ‘Tkn &b the Foutier Measure to be ~2hV2),

FC(21W3),...YC(2MJ9] (i.e. the Fourier ccxAlkients of the autocon-elation function for pexiods 2 to

9).

Period 9 Measure Define f(j)= frequency of R(j-other-bases)RYR

vector of values [f(5),f(8)J(l 1)].

and Period 9 Measure as the

Dinucleotide Frame Meamm: Make three frequency disrnbutions of dinucleotides in the window:

test-codon positions 1 & 2, positions 2 & 3, and positions 3 & 1. The indicator will be the three

chi-squared values measuring bias of these distributions from the overall dinucleotide distribution

of the training set (ding and noncoding).

Word Measure: Divide the window into successive, non-overlapping words of length 2, and also

into words of length 3. The measure is the pair of chi-squard values comparing

distributions of these words with the uniform dishibution.

the frequency

Run Measure: Let S1, S2,... S14be the nontrivial subsets of the set (A,C,G,T). For each Si construct
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Dinwkd& Bias Measure: M f(w), for ar.y powibk word w, be the frcquocy of w in the sampk

widow. Now foc each dinucleaide ab kt bias@) = [f(ab) - f(a)f(b)llf(a)f(b). TfM WUCl-

Bi.asMcasurc M bthcbiasvalues fcwthci6dinuckoti&.

Rcpcalhkasure:lhk eatlkxamers which occur, onavaag~mmc tbantwkcevcry 4@6basesto

khti~titiw”-utigdykwuofhw~ (324 in h- 247 in E. cdi),

inthecaling amimmmd.ing reference ~givcsthc Rept Measure.

In brief, tlw bedmark used is defined as follows. Homogeneous (fully c-odi.ngu fully nmcaling)

widows of Iixed * wre taken from the intmwtional ndeaxkk sequence collection. The data

q-~fitti W,@titi~wm uAMa Ug*LD~ t analysis (in two

fmcs: classical linear discrim.inant analysis, which requires inversion of the covauiimce matrix,

and F%nrosediscrirninant analysis, which does not) was USC3to define a linear function of the

measure which d.ismiminatcs coding fmrn noncoding. A threshold wm then set to qmliz the emr

rates on the ceding and noncoding training sets Then tic performance of lhc algorithm Wckliited

was evaluated on the other half of the data as test seL The average ammcy on the coding and

noncding parts of the test W was taken as the overall accuracy of the measure. The whole process

was carried out troth fm a region-specilic definition of coding and for a pha.sc-s@flc definition.

There is a great deal of redundancy in the suite of measures proposed to date. In some cases two

uwa.sures are sensing very similar things (e.g. aumc-melation and fourier). Ln many cases one

measure is derivable from or a specialization of, another (e.g. composition can be derived !lom

ccdcm usage cams). Figure 1 shows which ~ures can be derived from others.

The tnx in the right half of the figure contains most of the measures currently used. It is remarkable

tha~ without exception, measures higher in this tree have higher accuracy tian those below (and

derived from) them. That is, in every case, if we derive an exon recognition function directly from

a measure by using the Penrose discriminant, the result is higher accuracy than if we try to exuact

information from tic measure in some clever way, and apply the Penrose discriminant procedure
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of themcawaes notinthem9in trceatthcright ofthcfigurc, the@od9measure UldthewcKd

measUrcyi!eld r8thcrpmrresulu, Mdthe UolcomelWionuG8sure is essentially equivalent m *

mltlicr mmre’I’he !irstmain resu.ltofthe review, themistbto fthcmeasums Us@ fiuul’e

dgtiti-ely h~wti, nq~, tih-~~mm

mnbining 9cvudmmslKes docsimpscw elscuracy .’r’hehigh estswrc(lfany ~ in the

regitm-spedftc pdktion ofmdingfunctimcm 108ksehuman widows was76.6%. But E

UbdxAer kindly applied the -g Recogdix Mduk of GRAIL ,~her and Mural

l~l]mti l~k=hmmtm(ting dy~til~~dmh -w), dwka

tbfeshold wassuto equali.z csemitivity and specMcity theresukingac cumcyw8s79%. %

pbSC-S@fbC dkirnination we combined the six masures just discu~ again using classical

li.neardkrimhn t tiysi~ and obtained 87.8% accuracy on human 108 base WhdOWS (caqmrcd

to 84.% fm the most accurate individual Lrmwlre).’rllis lastcombhan “on was also applied to

human 54 base windows giving 82.4% accumcc (compared to 80.7% accuracy fm the highest

individual ~).

The second main result is that a measure which seems to embody little biological understanding -

counts of in-phase hexanuckmtides -- is in fact the most cffbctive one. In-phase wcud count

measures have a long history. The first use we know of the codon usage rrmsure in a published

algorithm is in [Stab and McLachlan 1982]. Separate word counts of different lengths frtr each

phase were considered by [Borodovsky et uf. 198&L 1986b, 1986c]. These papm considered

words of length 1,2 and 3 (limited data were available at that tirm). More recently the same author

[Baodovsky and McIninch 1993] has extended his work to include words of length 6. [Claverie,

Sauvag~ and Bougelem 1990] was the tit published use of in-phase hexarner count measures.

Since the time of ihe above survey, other measures have been proposed. Snyder and Stormo [1993]

use the average mmplexity of octamers (measured by entropy in the sense of information theury;

~. [Konopka & Owens 1990], which takes a somewhat different approach towards entropy than

does [Almagor 1985], reviewal in ~ickett and Tung 1992]). Solovycv and Lawrence [1993],

extending the in-phase hexamer approach in a direction that tudceson some characteristics of

similarity search, report that in-phase octamers and nonamers give even higher accuracy.
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[oadnik ezaL1994] stlggest 8mcaslIRb’asalOn flwtuatkmsin ●pm@@nkk widow

mmnt (in ● ratk ~ window; >~ bp su~cstod by the authors). ~, when IWwcoding

masuresatcimducuL it is difbxdt to tellwhether the ~ are, in.thanselve& better or

~b-gmmwkk, mtiti~timkxt kwtihtiym~tid~va

better pdimnance. It would be interesting to apply the lmchmark of ~ckett & Tlmg 1992] to

tllcscncw-uresL

W will likely cuttinuc to see incremental improvements in coding measures. FirsL Guig6 and

-[l~bwbm tit** of- Hmsmcffi -Mthti@, dti

uKa’ebOseaJlqmitional differences can cause larger fluctuation.s in the values ofcading measures

than the diffaences between coding and noncoding regions. So tailoring the measures to differing

base caqdbns may well improve accuracy. In this regti Ku et uf. 1994] have adopted the

strategy (not separately evaluated) of measuring hexamer counts for “high” and “low” CG content

reference ~ and then using linear interpolation to make a set of counts intended to be appropriate

for the CG cootent of the test sequence.

sand it will IXOWly be useful to systematically distinguish between several classes of

sequcme, rather than just “coding*’ and “noncding”. Konopka has long proposed a general

framwork of “functionally equivalent” classes of sequences (for a concise introduction see

CKonOP~ 19921Ld -IY show~ hat in~nst in *UOII 10 l~kh mid fWIMM OfeXOnSS

also have features of their own, fcr example a tendency to show a twmbase periodicity in the

wcurrencc of cumin oligonucleotidcs [Konopka et al. 1987J[Konopka & Smythcrs 1987]. Guig6

aml Hckctt [19951 show that intcrgenic DNA has very different statistical properties than gene

fltudnng sapnces. Krogh, Mian and I+ausskr [1994] found it profitable to explicitly model

intcz#c DNA in E. COfi (see below).

Finally, one wombs whether the many variables of some of the above coding measures (for

example the 4096 variabks of each hexarncr measure) arc all making impxtant and independent
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alrmibutions to dkcrimination. h might be. f- example, that the signal to noise ratio of the

measure could be improved by pruning out the less informative variables.

mmeansbywhich theinf~ in a coding measure is reduced to a single wore, or a yes/no

answer, has varied G xtly. In the case of in-phase hexamers, for example, Claverie, SauvageG and

Bougekrct [1990] weight the observed count of each hexamr by the ratio of its frequency in

ting~~stothat in all DNA. F*,-* ~S- [1~2] usc a I’IC~ ~t wi~~

inputs to dtxive a dimimirmn t. -vSky and McIninch [1993] MW tWOnon homogeneous

(~-t) 5-steP ~ *1$ one for the coding regions of ewh S- and a

hmnogencous model for noncoding regions, calculate the probability of obsuving a window under

each of the seven cxmcsponding hypotheses, and then use Bayes’ thmrem to derive the posterior

probability of each hypothesis given the window. Ot is wcmh noting that in most algorithms, the

method is applied separately to the two strands, and me results combined in a pst-processing step.

In the work of Borodovsky and McIni.nch, on the other hancL the seven relevant hypothesis -

coding in each of six possible h.mcs, or noncoding -- are direcdy c.ompad in one step.) ‘Ilmmas

ad Skolnick [1994] comider seven classes of nucleotides: those in the three codon pitions, those

in intergenic regions, and those that arc in introns breaking the coding sequence at each of the three

possible ccuion positions. Assuming a one step Markov model for the state variable, and that the

probability distribution of the bases at each position of the sequence depends only on the bases and

smtes in the immediate vicinity, they use Bayes’ theorem to make a maximum likelihoml estimate

of the state at each base of a given sequence. There is vay limited information on which of these

methods (or the many others that have been used with these measures, other measums, or

combinations of measures) is best. ‘Thegeneral feeling among developers is that the differences are

usually small, but comparative objective testing would be very valuable.

Signals: introduction

The coding measures considered above are all closely related to patterns of ccdon usage. In what

has now beconm common usage, Staden [1990] terrmxl the use of such measures “gene search by

content”. Of course codon usage is merely a side effect of the biochemistry of organisms. It will be

more enlightening when we are able to recognize the locations in a genome ‘~here the gene

expression machinery interacts with the nucleic acid, and so rxognize the genes in a way pdki
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Colbukmofallspcdfic ktanccs Ofsomcpdcularkind ofsignal, forinstanccthe setofau

ti~~titih- ~ti~ytimk~l y-. bti~ti~

dq-d@itw~Wtis -~tib-~-y~aame~M

seqwuz.’I’hat koncalignsallthc specific scq~and thcntakcsthc moatcommody

oUXringbase Metid’@W@dpdtimwfm& conscnms.’I’khi twas~thcactuala ites

wdd k dilT&zdated from qmrious sites simply by distanm (e.g. numberof bases diffcmmt)

iklmtkconsmU& Thisapproachturnodout tobctoosimplq though thccownsus Scqueaccs at

varioUSsitcsafcstillusdd fathdrmnUmmic value.

hisnowlmst comnxmtosummmimthc CommoMh“tics in (that is, fmm a template f=) a

-~li@bY~gti*h of each nuclcotidc at each aligned position, rather

titiply~gtim~uaton ~a~~tidti~~ mti~~titi

ficquency of base bat position i is tabulated as f(b,i). Then a~itbn wight mumixm is derived

b f, most often by m(hi) = log(fKbJYp(b)),where p(b) is the gcnomic 6WCIKV of base b

(dewed in [Stomm 1990]). Any sequence to be tested fa signal function is mprcscntcd

analogously,withs(bj)= 1 HWiti-ofWq~~kb, dO-~~tie~vdw

of a sequence is the dot productof these two maticsj ~ [ m(b,i) ● s(bj) ]. (Bccausc oftk f-

of rcprcscntationof the information, this approach is sometims called, armng computadonal

biologist!& the “matrix method”).

This appromhis justified by several theoretical studies ofprotcin-DNA binding (e#. ~ & von

H@@ 1988], [von H@@ 1994], and references therein), and a numberof experiments in which

a DNA signal scqucncP is systematically varied and the activity of the variants measured (e#.

[Mulligan etd. 1984], - Sad,& RiV~ 1989], and ~dok etd. 1994]).

- ~~y sudti h =ults of these studies as fbllows. The activity of a signal sequence

14 3/2’7/95



,

is dctcnnined by the propmtion of the time that the sequence is bou~ which in turn depends on

the abundance of the binding molecule (typically protein or RNA) and its binding specificity, that

iq the degree to which the binding molecule “prefers” the signal sequence to pseudosites. In

comparing the activity of different signal soquenccs for the same binding molecule, or in

attempting to distinguish the signal sequences fkom pseudosites, we may take as constant all factors

affecting the availability of the binding molecule (overall abundance, the frquency of pseudosites,

and the avaage aflinity of the pseudosites), and deal simply with the binding energy of the binding

molecule to the site at hand=‘flMfust major result 6om experiment is that this binding energy is

often closely approximated by simplys umming the contributions of the individual base pOSitiOnS,

as if they were independent- This of course means that activity can be predicted reastmibly well

by some matrix calculation as described above, though it does not determine the form of the matIix.

If we assume that the f(b,i~(b), as defied above, is representative of the ratio of bound to he

reaction concentrations for base bin its interaction with a speci.tk site on the binding molecule,

then the logarithms in the ~sition weight matrix are proportional to the free energies of binding

for each base. ‘Ilis is one way of justifying the particular form of the position weight matrix.

Alternatively, one may note that the sum in the dot product above is, from a statistical point of view,

just the log likelihood ratio of the test sequence being found given (1) the hypothesis that the

sequence comes from a set in which the bases at position i have probability distribution f(b,i) and

(2) the hypothesis that the sequence comes from a set in which the bases occur with frequencies

p(b).

In many cases, the dot product of the position weight matrix with the sequence seems to be a

relatively good predictor of signal sequence tictivity, In [Barrick et af. 1994], for example, 185

clones with mndomizd ribosome binding sites were selmed, and for each the activity was

measured and the binding site squenced. A matrix was first determined by multiple linear

regression, The regression matrix prdicted actual activity with a correlation coefficient of 0.89

(when cases WYhalternate start codons were eliminated, this rose to 0.92). Further, when a position

weight matrix was calculated from natural sites, the correlation coefficient between the two

matrices was 0.88.

However, position weight mabices do not alwayr work well, and it must be recognized that a
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numberof simplifying assumptions underlie their use. ‘he use of psition weight matrices ignores

the availability of the DNA or RNA (the effects of chromosome packaging and secondary

structure), non-independence between bases (importan~ for example, in cmfcxmational changes

due to base stacking), different versions or conformations of the binding molecule, and interactions

hween mukipk binding rmkcuks.

Non-independence between bases may be taken into account by a relatively simple extension of

the position weight mafi namely using a larger matrix where columns correspond to the various

~ible oligomm at various psition~ rather than to individual bases. One exampk of this

approach may be socn in the work of ‘Ihomas and Skolnick already cited (the uniformity of their

w-h *= ~ning” tie dgorihm very easy). Another will be seen below in the work of

Solovyev, Salamov, and Lwrence. Ofcoume, the longer the oligomers, the more data is needed to

reliably calculate the matrix.

The use of posidon weight matrices in recognizing key elements of eukaryotic genes, namely

splice sites and promoter sequences has to date 14 to relatively limited success. All of the above

limitations of the rmthod probably play a de here. However we would hazad the guess that the

main factor is the cooperativity among multiple binding mokcules. It is rare in eukaryotes, fa

example, for large numbers of genes to have precisely the same complement of proteins involved

in the initiation of transcription. We will return to this point below.

Where applicable, the consensus and position weight marnx methods have the advantage of being

relatively simpk and well understood. Assessing the significance of search results has been memd

in ~aterman 1989] for approximate matches to a consensus pattern, and in [Claverie 1994a] and

[Goldstein and Waterman 1994] for searches using position weight matrices.

A wide variety of other methods, difficult to summarize in a limited space, have been proposed to

recognize signal sequences in genomes. Most of these have not come into wide use, and the reader

must be referred to [Gelfand 1995] and the on-line bibliographies mentioned above for more

details. One method which has seen fairly extensive use is that of neural networks. When the

network has only one layer, it produces a linear discrim.inant function that is usually fairly close to

the position weight matrix derived by the methods described above. However when rhc network

has multiple layers, with hidden units, the function encoded is more complex. The use of neural
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networks inthe analysis of nucieodde (and amino acid) sequences was reviewed in ~t and

Stcrnkrg1992]. m neural network algorithms reviewed showed IXtter @ormancc than m

statistical approaches in a number of cases. However it is not altogether clear whether the

improvement was due to integration of several kinds of evidemx (discussed below) or to the neural

network means of integration.

One (iiiTIculty with neural nets, and in fwt with machine karning methods in gcnerd, is the

distance between the understanding in the machine and the understanding in the human expem

Most such algorithms are designed to begin h a randomized state, that is, without the benefitof

my knowledge already gained by experiment or other metlmls. A.r@ when the algorithm has

tinished the training stagq it is typically rather difiicult to retrieve the “understanding” that has

been captured. In this regard, Shavlik, Toweil, and Noordewier [1992] have made interesting

progress by developing neural net methods that can start from an intelligible base of ruks and, after

training, can return a refined set of rules.

Many methods of sequence signal recognition require a set of sequences with functional sequence

elements already precisely locacd and aligned. However, it is often the case that experimental

work has only approximately located the sequence element, and that the best alignment is unclear.

Thus sevcml groups have developed methcmis to optimize the localization of the sequence

elements, the alignment, and a weight marnx m other discriminant, simultaneously; see for

example [Cardon and Stormo 1992], [Lawrence e[ af. 1993], [Borodovsky and Peresetsky 1994],

mgh et af. 1994]. These rnethcds have to date been applied primarily to other problems, but

show significant promise for the identification of eukaryotic signal sequences.

Signais: basai gene biochemistry

Gene signal recognition work to date has deait with the problem of recognizing the signals

common to essentially all genes. For example Bucher [1990) has defied weight matrices to

partially characterize four eiements common to most eukaryotic pol 11promoters: the TATA-box,

capsignai, CCAAT-, and GC-box. ‘Ike were derived fi’om the Eukaryotic Promoter Database

[Bucher 1988]. In [Cavencr and Ray 1991] sequences flanking translational initiation and

termination sites have been compiled and statistically amdyzcd for vadous eukaryotic taxonotnic

groups. ‘Ilw polyadenyiation reaction is reiativciy weli understood now [Wahle and Keiier 1992],
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and information on translation termination sites has Ixen collected in the’’fkansladonal Termination

Signal Database [Brown et d. 1993]. Yada er td. [1994] use discriminant tinalysis to derive a

position weight maui.x to recognize the polyadenylation signal. All of this information is useful in

helping to rcxmgnizethe beginnings and ends of genes, however computational methods for such

recognition are in their infancy, and will require significant further development to attain high

reliability.

-nsus sequences for splice junctions have been remgnizd for many years ~reathnach and

C%ambon 1981]. A comprehensive cdlaion of splice junctions and weight matrices, commonly

referred to, may be found in [Scnapathy, Shapiro, and Harris 1990]. Ckmsensus sequences alone

give rather unsatisfactory results. The best successes to date in predicting splice junctions come

b integrating several kinds of evidence. Shapiro and Senapathy [1987] combine base ficquency

infcnmation at the splice site with a check for an open reading frame on the comect side, and an

evaluation of a pountial polypyrimidine tract near the acceptor. Including a requirement for related

patterns (e.g. a branch point within a specified distance upstream of the acceptor, and no AG

dinucleotide between these two sites [Ohshima and Gotoh 1988], [Gelfand 1989]) seems to

improve accuracy. At true splice si~~s,coding measures should give values characteristic of coding

regions on one side of the splice, and values characteristic of noncoding regions on the other. Thus

in [Nakata, Kanehisa and DeLisi 1985] and [Brunak, Engelbrecht and Knudsen 1991] information

concerning splice sites per se, for example positional frequencies and binding energies, are

combined with the values of coding measures on either side of each potential splice site, to give

improved splice site prediction. Solovyev, Salamov, and Lawrence [1994b] give an exceUent

ovetview of the literature and a careful synthesis of existing techniques. They repofi what appears

to be the most accurate algorithm for human sequences to date, using triplet counts (due to ~ural,

Mann, and Uberbacher 1990]) at significant positions near the branch point and splice junctions,

octamer counts on either side of the junction, counts of Q GG, and GGG downstream of potential

donor sites, and counts of T and C upstream of potential acceptor sites, all combined using linear

discriminant analysis. Taking the sets of GT and ACIdinucleotides as the set of all potential splice

sites, Solovycv, Salamov, and Iavrence report 96% sensitivity and 97% specificity for donors, and

96% sensitivity and %% specificity for acceptors. (These methods are combined, using linear

discriminant analysis, with oligonucleotide-based recognidon methods for coding regions and the
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beginnings and cd of genes to produce an exon recognition algorithm FIX.)

In as many as 90% of the vembrate mRNAs, the tit AUG codon is the unique initiation site, and

in the exceptional -s a number of factors have been elucidated that govern the probability of

mnslation initiation at a particular A’173.These include neighboring nuckotidcs, leader kngth,

distance to other ATGs, ORF length, and secondary structure; ~. ~ozak, 1991].

Signala: mgulatioa of gene exption

The complexity of gene xcgulation naturally increases greatly with the number of tissue and cell

types in an organism, Thus, although some universal commonalities have been identified in the

known genes of some prokayotes, it would now appear unlikely tha~ any simple characterhtion

wiU be found for tic gene promoters of Homo supiem (or, probably, of any other differentiated

mctazoan species). Thus, although the regulation of eukaryotic gene expression has atmwtcd

relatively little attention to date fim developers of gene identification algorithms, such algorithms

will, in* future, almost certainly take into account the complex signals for transcription initiation

of specific classes of genes.

Utilizing this wrt of information will bring an sddcd advantage, in that spccMc transcription

elements prcvide important clues to gene function. This is an opportune time to begin making use

of information on gene regulation, for a remarkable amount of information is now appearing, with

new papers daily, on gene-specific, tissue-spuific, stage-specific, and stimulus-specific

transcription signals.

Several collections of sequence elements for Transcription factors have appeared, including the

‘fkanscription Factor Database [Ghosh 1990], the collections in ~ker and Bmmd 1990] and

~aisst & Meyer 1992], TRANSFAC [Knueppcl et uf. 1994], ~mgender 1994], TFDB

[Mizushima and I?ayashi 1994], and TRRD [Kel et al. 1995]. The fit three of these arc no longer

rncinta.incd. These collections, in addition to incorporating the squences of individual signal

instances, sornetinws include consensus sequences or weight matrices,

It is not clear at this point to what extent consensus sequences or weight matrices can differentiate

true from false transcription elements. This remains a research area, as does the problem of how

best to usc the transcription ckmcnt information in gene identification algorithms. One promising

19 3/27/95



appoach is _ iJI[-tigc 1995]: ht the CdhWkWI StCp,~WtSUS SCqlMCCSWe USCdto

rCCO@iZCPUUtiVC ~~@~ f~t~ biding sites h n ~ning set of Prom= and non—promoter

Icgions, and ratios of densities for putative binding sites in pmmters and r:oii-promotem are

recmrded for all transmiption factors in ‘IT’D. In application, the density ratios of putative

tranxripdon fxtor binding sites (again recognized by means of consensus sequences) are

surnmd and this score is combined with the Bucher weight mrhix score of any putative TATA

box. When the score threshold is set so that 70% of promoters are recognizd correctly, one false

pOSitiVC is recoded about once CV~ 5~ bases. (An “Jtier paper, [Praridgc and Burks 1993],

found that the simple density of putative transcription elements is not dkriminatmy).

Gene syntax and Integration of Inforrnaticm

it is well known that gene expression in vivo involves considerable interaction and

interdependence among various components of the transcription and translation machinery.

Exa.nydes include coozd.inatebinding of multiple muwcription factors and mutations in a 5’ splice

site resulting in the skipping of an upstream 3’ site. Thus it is not surprising that programs

incorporating some overall mcxlel of gene structure give increased accuracy even for the

recognition of individual gene components. In the case of intron splice site% the integrated

methods discussed above give roughly a factor of 10 improvement over recognition by consensus

or matrix methods. Another example is seen in Einstein er al. 1992], where it is shown that 60%

of cxons urtck 50 bp missed by the original GRAIL c-mail semer may be detected by a logical

analysis of splicing and ffame.

A number of programs have appeared in the last few years that are integrated in the sense of taking

gene stmcture into account to predict exons (SOR.FIND, [Hutchinson and Hayden 1992, 1993];

FEX, [Solovyev, Sa.kunov, and Lawrence 1994% b]) or genes (GM, ~ields and Soderhmd

l~J~Soderlund er al, 1992]; the Gelfand program, [Gelfand 1990aJ[Gelfand & Roytberg 1993];

GeneID, [Guigo et al. 1992][Knudsen, Guigo & Smith 1993]; GenViewer, [Milanesi etal,1993];

GeneParser, [Snyder & Stormo 1993]; GRAIL II, [Uberbacher et al, 1993][XU et al, 1994];

&nLang ~.g and Searls 1994] (cJ also [Searls 1992]); and the program of [Krogh, Mian,

Hausslcr 1994]).

(’Ike are other gene prediction algorithms not yet published. In one prominent case, the analysis
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of the C. e&gam genomic sequencing group (~. wdmn et aL 1994]) makes use of an algorithm

GeneFinder develqd by P. Green.)

The goaL In writing any new algorithm the single most impmant design decision is often, of

~, the choice of a precise goal. Today, :~e goal of a gene identification algorithm is usually

taken as obvious. Though there arc minor diffcmwes, mostly associated with whether or not only

optimal sdutioos are shown, developers take the mentid god to

~nw~ag-d tin~gofa kw@gwtOtiu~.

be the assembly of all

In the long run itwill be important to extend this goal to meet the practical needs of more compkx

situations. Cument algorithms typically expect to find all mmponcnts of each gene and

sometimes, of only one gene. In practice, however, a sequence presented for analysis may have no

genes, @al genes (particularly in the case of very large genes, such as human dystrophin. which

is over 2 Mb long), multiple genes, genes embedded in the introns of other genes (~. ~vinson el

al. 1990]), or genes with multiple expression patterns. Unusual mechan%ms such as gcnome

reamangements (as in the imrmnoglobulins), tram-splicing and RNA editing (as in some

organellar genes), and the use of unusual tRNA species, are rarely dealt with. Thus it will lx

ntxxssary to develop algorithms that can produce a feature tabk of relevant gene features in

whatever combinations they happen to occur.

In addition, it is now widely recognized that an important part of the goal must be to recognize

when a small change in sequence will resuh in a large change in function. This is impcmnt for

recognizing non-functional alleles of “disease genes”, pscudogencs, and genes in first pass

sequence data (~. [Clavcrie 1993b], [Krogh, Mian and Hausslcr 1994], Fields 194].)

Kinds of integration. Gene identification algorithms typically begin by attempting to evaluate

possible compcment objects or aspects of genes, proced to integrate these into cxons, and finally

integrate the exons into genes. At both the exon level and the gene level there are two very different

kinds of integration involved. The fist is primarily biological, taking into account the syntax of

genes, for example typical spacing of components and the partitioning of the primary transcript

into alternate exons and introns. The second is primarily logical and statistical, taking into account

the relative imptance of different kinds cf evidence, and the combining of scores into overall

measures of opdmality in gene models. We will take these up in turn.
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Syntedkal in~th. All integratedgem kkntification ~ make usc Of the high kvel

syntax of genes resulting from our basic mhtading of manscription, splicing, and translation.

‘lMing “exon” in the coding sense, rules similar to the following are normally used:

The first coding exon begins with the start codon and ends with a donor site (or the stop

*if there are no internal exons).

Any interns! exons begin with aaeptor sites and end with donor sites.

-h-m b~titin~si~(mt im-)ddtitib~b.

lle primary transcript consists of the transcription initiation site, a 5’UTR, alternating

emns and introns, the 3’UTR, and the transcription terminaacm site.

When the introns are excised and the combined exons read in frame, no intcmal stop codons

are found.

In addition to this syntax of oukr, them is also some informuion on dimnce, as for example

appars in known size distributions for exons and introns (cJ ~aora & Deacon 1982], ~wkins

1988] and [Smith 1988]).

Although this ‘basicsyntax is clear enough, biology is of course far more complex, and less weil

understood. duu] these simple roles would imply. Such facets of gene syntax as alternative splicing,

overlapping genes, and promoter structure remain beyond the reach of the current generation of

algorithms.

In many of the algorithms available today, the rules of gene syntax am implicit in the structure of

the a.lgorithn but no “gene grammar” is explicitly listed. ‘IkJogroups have, however, taken a more

linguistic approach, making an explicit grammar the foundation of the algorithm.

D. Scarls suggested, some years ago, that a linguistic approach to the analysis of features in DNA

sequences could be beneficial (for an overview, see [Searls 1992]). This approach is first applied

to the identification of protein coding genes in ~ng and Searls 1994], where a formal, definite

clause grammar of genesis described. Partial scores are passed up the parse tree, and combined by

rules stored as part of the grammar. A training procedure is used to alter the score combination ruks

in order to optimize eccuracy. Standard parse tools are usd to find correct and high scming parses
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ofa Saqtwlwe

- Man, and Hausskr [1994] use a Hidden Markov Mcxkl (HMM) to integrate gene

mmponents info overall gene ndels for E. colf squemces. In essence. thismeanslhatthq

construct a probabilistic finite automaton that assigns a probability to every possibk parse of a

sequence into pmnoter, ~ coding, stop, and intergenic regions. The Expectation Maximization

algorithm is used to estimate the pammeters of the H.MM. Then the Vherbi algofithm is used to

findthe~t@abk parse ofdwsequence.

Logical integmtlom A variety of evidence is typically employed in computer suuehes for protein

coding genes. One of the critical choices in algorihm design is the choice of method for combining

these different types of evidence.

Gelfand [ 1990a] was the first to explicitly discuss the question of providing a natural liamewti

for the integmtioa of coding measures, matrix scmes of signm and overall syntactical

requireu.wnts The approach chosen was basically statistical. ‘Ib avoid dependence of score on the

length of the gene, raw scores are taken as the average donor score, the average acceptor score, and

the average TESTCODE window score [Flckett 1982] over the exons. Then all scores are put on

the same scale by expressing them in standard deviation units about the means of their obsemed

disrnbutions. The sum of these norm.akxl scores is the score for the gene.

Several other authors have also taken a fundamentally Probabilistichatistical approach. The

discriminant analysis approach of [Solovyev, Sahmov, and Lawrence 1994L b] is of course

statistical. Stormo and Hausskr [1994] suggest a general probabilistic fkamework in the situation

where one is partitioning a sequence into two classes of intemds (e.g. exons and i.ntrons), has a

number of scores for each possible classificatiorl of each pssible i.ntem.1, an4 is combining these

scores as a linear weighted sum- They suggest interpreting the scores and the sum as log

probabilities. They then give efficient algorithms for scaling the scores so that the probabilities will

sum to one, fcx calcule,ting the probabilities, for choosing the weights in order to maximize the

probability of given (“training set”) sequence parses, and for finding the top ranked optimal and

suboptimal parses, (Compare also [States and Gish 1994], where codon bias is integratal into

BLAST searches using a likelihood approach,)
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Apardcuk dvantage of the HMMappoach of KmglLMian, ad Haussk[19!M] is that it

-y - a joint psobabfity distribution over qwiccs and parses of those squenccs.

W HMM thus prodes a very natural vehick fcu cmsidaing the possibility of introducing ●

sequence correction togetamompmbabk~

The salient advantage of taking a probabilistic point of view is that it may be possible to assign a

titigmti ~lt--mbv~tik m~plytiei~ptit

dview mmistently m the SeqIEnce inqmation Pfobbtiaway thatallowedon etopvide

answers fmsuchquestions aa”how likely isitthat athtcmeemmof thispdicted geneis

completely camect?”, “how likely is it that the correct gene and this predicted gene have at least

W%ofthct ranslatedpraeirlin comumn?’’m,%owli kelyisit th atthis isinfti the moat

commonly used translationinitiation site?”.

@l@g Probabilistic _ mtismtiy i$ hOwWCl,VW di.ffiCld~ baXUse of our hrnited

tiwkdge. Most authors, therefore, have taken what might h termed a machbe kaming

approach in which scores of various aspects of pufativc genes are meaningless numbers, and the

rules fm mmbini.ng these numbers may therefore be manipulated at will to improve rhe accuracy

of prediction. The advantage of this point of view, successfully exploited by a number ~f

invemigatms, is that purely empirical machine learning techniques may be used to improve the

algorithms by which scores are combined Thus for example both Guig6 et al. [1992] and Snyder

and Sturnm [19!34]use a neural net to revise the weights by which different atomic measures are

combind Dong and Searls [1994] use an ud hoc training procedure to revise the score-combining

ruks mxlciad with eswhncxk of the parse tree, and Salzberg [1995] uses a decision tree algtithm

to combine information from several coding measures. in these uases it is repcnwl Ihat machine

learning algorithms combine informaticm in a way that significantly improves performance.

Chthogonal to the choice of a probabilistic or a machine karning approach to the interpretation of

scores, there is also the issue of organizing one’s evidence, Most gene identification algoridms

recursively construct gene mdels horn partial subassemblies. For instance, atomic compments

may be scorul fim~ then exons consmucted and scored, and finally genes assembled from exons

and a final score assigned. Funher, most evidence gathered by gene identification algorithms fits

neatly into this recursive hierarchy. Thus Dong and Swirls [1994] elegantly summarize the basic
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m.

UnfOftunauly, however, m all of the evideIwe that - needs to take into &xount is directly

related to a subassembly of the gene. For example, if the t.ranslntcd prouin from a candidau gene

contains a region similar to a known protein motif, and this region cmcspmh toparuofeachof

mex~iti snotobvioushowthis shotddaffoct eithe-rthe scaesofkcxcmsmthe sccu:ofthe

geneuvcralL Dcmga.nd Searls solve this problem byspdying sgramom in which not all

complmellts dap useare compellts of thegckforexampk onepammmpcmemtis the

average cxon quality. Anmkr cacnrnon approach is to ap~rd pqmxsur rules tothemai.n

algaidun Thus GRAIL ~her et uf. 1993], [Xu et al. 1994] hwqmatM a number of

heuristic rules for finding he boundaries of cxons, and Krogh, Mian, and Haussler [1994] compkte

imlependent analyses of the complementary DNA strands, and then combine than by means of a

scnallmofruk

Efkient computation The number uf possible genes to con- ~, and d even in a

sequcti of a few kilobascs, is quite la’g- Snjd~ ti StOrmO[1992] ~ hl&-dy; ~~~

aml Roytberg [1993], introduce dynamic programming algorithms to efficiently find optimally

scoring solutions. Guig6 er af. [1992] intrcducc the idea of exon equivalence -- using one cxon to

represent a class of roughly equivalent exons -- as an alternative (and possibly coordinate)

approach.

Despite signika.nt advances in sequencing technology, it still takes longer to praluc-c a sexquence

than it does to submit it to the analysis of even the slowest gene identification algc-itims. What

may be an even more wious bottleneck is the human attention required to interpret and integrate

the output from the several kinds of important computational analyses. Thus in addition to e.fiicient

computation, significant attention should be devoted to the problem of building algorithms to truly

integrate all the evidence for gene location and function, and to give aczurate answers to

biologically meaningful questions.

Jumrnary. As will be clear from even this short ovemiew, the area of whole-gene recognition is

moving rapidly, with advances being made on several fronts.

conflicting, innovations are being made by different groups.

25
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Particular techniques are rarely
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cvahlwdinisoMon,andcachpairof progmmsusuallydiffas inmanyaspcct.s.l’hu stkreisno

oncbstpmgrwrh noristherc likely to bcone soon.

Accmaciks ofthcabovc pogramsal’ csomcwhat difficult tocmpafc,asbcnchmarkms and

testing mdmdo@y arc not yet smndardizod. Roughly speaking, the accu.rxy of most of the above

~ is e xx * a EW (not H before by the algohhm) sequence is chosen that

cmntains allofone gcncanditsfhmking regions (andnoor.hcr gcnesorpartial gcncs), and this

scquubcc is pescnted to the algtiti the predicted gcmcwill typically largely ovtzhtp the known

~huhawytiaht ~~oftiedng timti~b~gc=, d

tit8SWtiti kting-ti&b k@dgm. ~tk, ti@~ge~

will Icmkvuy much like the known one, but there will usuaUy be signifkant differences as well.

There arc, how~er, hints that this performance may not extend to genes typical of the genon

(rather than of the database). For example bpc~ Larsen, and Prydz [1994] report that when

GRAIL is used on long, recently determined sequences the accuracy is significantly lower than on

the original test set. It is quite possible that similar results will be found for oh tools.

The developmentprocess

This paper is concerned primarily with algorithm design. However, it is important to mention

briefly some closely related issues.

Data. It is beyond the scope of the ndeotidc sequence databases to maintain a reflection of current

biological

developer

irtcoma

Undmtadm“ g in the femures rccordd on all known Scqucmxn. Thus the algorithm

must be aware that annotation in the databases is often incomplete and sometimes

One solution to this difficulty is to take a set of a few tens of sequences, V* the annotation in

detail for this set, and then usc it for algorithm development and evaluation. The advantage of this

approach is, of course, that one can be personally assured of the quality of the data. A disadvantage

is that the variety in such a set is rather limited, and algorithms developod in this way may not

generalize well to new data

Another solution is to accept the databases as they arc, perhaps removing some large classes of
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entrieslikely to confuseone’s study (fm examp~ entries with no annotndcnl,S’IS rmpnccs, m

duplicates) and take the iacanpleteness of annotation into account in interpreting results.

A compromise between k two approacbui is to take advantage of cm: of a number of

spccialiti, curatcd databases of intermediate size. One such, of particular rckvancc to the

development of gene identilkation algorim is the collection of Functionally Equivalent

Sequence sets (iincludin& for example. a number of specidid collections of exons and introns)

described in -h l~994a].

Evaluation. W&monly a few techniques had been developed fm gene identification, it was often

sufficient to demonstrate the value of a new technique in a few special cases. However, extensive

benchmarking is now widely appreciat~ and an innovative technique that is objectively shown to

be of value in a large number of cases also stands a Ixxta chanct to be widely adopted It is a.ko

imxeasingly impcwtant to know the performance of new techniques not only on the %ainsueam”

genes Comnmn in the public databases, but on genes with unusual base composition, cm rarely

expressed genca and on single pass, error-prone sequences.

The evaluation of integrated algorithms is complex because there is no one best interpretation of

the question, “how comect is this prediction?”. Guig6 er d. [1992] made an important advance by

suggesting that accuracy of integrated algorithms be evaluated on a nuchide basis. They rcpon

the counts of three classes of nuclcotidcs: those in the known cding region and the predicted

ding region; those il. the known, but not the predicted coding region; and those in the prcdicd

but not the known .oding region. These numbers am combined in the set-theoretic comelation

coefficient [Cramer 1946]; ~atthews 1975] between the set of true coding nuckotides and the set

of predicted coding nucleotides. Since the cmelanon coefficient depends not only on the

algorithn but also the data set, developers should always give the raw numbers as well as the

summary coefficien~ Evaluation is also difficult bccausc there is as yet no consensus on the form

of the algorithm output anddifferent forms (e:g, a set of coding regions, a set of exons, a single

most likely gene, a ranked list of possible genes, erc.) arc not completely comparable.

Performance of algorithms is, of course, in pan dependent on the quality and contiguity of the

sequences prcscntcd. Clavtie [ 1994c] evaluates the pcrfonnancc of GIL41L when raw, single

sequencing runs am analyzed, and suggests that it is unlikely for the use of first pass, fragmented
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daQ initsci.f,to kad to faiiai detection of genes. Kamb et uf. [1995] evaluate XPOUND ~omas

and Skolnick 1994] on 400 bp sequences conmining caiing scgnnmts of various Imown sizes and

positions. They conclude that in performing 1(M)sequencing reactions on randomly selected

fragments of a P1 clone, foUowcd by XPOUND amdysi~ between 50% and 75% (depcncimg on

the typs of sequencing errors) of all genes present in the P1 would he detected.

Bcnchnwking is also a significant issue for users, who need to know not only how good the

algorithm is but how to interpm a particular score. in the case of SORFIND, which predicts

internal exons, Hutchinson and Hayden [1992, )993] divide the range of the output wore into four

rangc~ and for each report the actual 6cquency with which the algorithm correctly reports exons

in that score iange. The situation bccorms more complicmd when the output consists of genes (or

feature tables) rather than cxons. By considering many suboptimai solutions, Snyder and Stormo

[1992] attempt to give the user a feel for which parts of a predicted gene are most likely to be

singh and Krawctz [1994] compare the pdormancs of four cuiing measures and the GRAIL

e-mail server on one E. coli and four human genes. This sort of objective, third-~, comparative

performance measurement is vcv valuable and unfortunately rare. It is to be hoped that further,

and more comprehensive, studies will appear.

Communicatiat of results. Since a large number of reasonably good techniques are already in

existence, every developer must be aware that in order for an important innovation to spread, it

A to be described clearly, in enough detail that other investigators can easily dupiicatc the

work. This has, of course, become more difficult as algorithms have grown more complicated. Yet

the ckvelo~ who is abk to completely specify the algorithm in print will find others much more

willing to ado~ proposed techniques.

Interface. It is a remarkable fact about the field of gene identification today that many, perhaps

most, of the best algorithms arc not widely available. This is !lrst of all simply because many

developers have not had the time to develop an intuitive interface for those whose primary business

is experimental biology. Indeed, one of the most impcmant factors in the widespread usc of GM

and OIWL is the effort that its developers have put into interface development and community

education.

28 3i27EM



A second limitation on availability is less obvious but no lCSSreal. This is that most algorithms
.

tcxlay are organism specific, in implcnmtation even if not in concept. To overumc this problem

resetuch on the degree of generality of various techniques is needed For exampic, arc in-phase

hcxamer Counw the single most useful cuding mcasum, fairly stable only within species? Or can

discriminant vectors for this measure be meaningfully calibrated for all mammals, or even for some

wider group, in onc step? Jf most techniques are highly specific to rehuivcly small parts of the

taxonomic Irec (similar remarks apply to classes of genes), then a way needs to ~ found to allow

the typical computational support person in larger biological laboratories to tailor existing

algorithms to a particular context.

Summary

There has been a great dca.1of progress in gene identification nmhods in the last few years. At least

inthecasc ofscquence data from mammals, C. elegans, and E. coli, the older cding regioa

identification methods have given way to methods that can suggest the overall stmcture of genes.

And for all organisms, computational methods are sufficiently accurate that they give practical help

in many pro@ts of biological and medical impcm

Yet them is still room for significant improvement. Many of the better algorithms are not widely

available. investigators studying organisms other than those mentioned above may find that only

the ohkr algorithms arc available to them. For the more advanced algorithms, it is still the case that

predicted genes, while largely overlapping cxprcsscd natural genes, arc typically inmrcct in a

number of details. Further, it is not clear that current algorithms, developed on the very atypical

gene sample available in current databases, will perform as well on genes more typical of the

biological universe as a whole. Essentially all current algorithms depend hv.vily on codon usage

bi~, but it has been shown that this bias is less informative in genes with low-level expression

[McLachlan, Stadcn, and Boswell 1984][Sharp et al. 1988][States md Gish 1994].

Perhaps the single greatest opportunity in the development of gene identification algorithms is to

include more detailed biological knowledge, relying less on techniques that attempt to provide a

single elegant description valid for all cases. TIMdescription of (say) hpman genes inherent in any

of the currentgene recognition programs could be written down in a few pages. ~iven the extent
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to which evolution is opp’t’tmistic tud haphwrd, and given the pmvakncc of exceptions to

essentially all general principks in molecular biology and biochemistry, it seems most unlikely that

essential aspects of any gcnome will be dcscrihod in such simple terms. Greater emphasis should

probably be pla~ then, on lookup methods over template mcthodw more richness is needed in

the modeling of cukaryotic gene regulation; and, in general, a trend maybe expected towards gene

identification algorithms becoming interfaces, with a general model of gene syntax, to a large

immber of databases of specific facts. Fmt steps in this direction may be found in [Borodovsky,

Rudd, and Koonin 1994], [Clavcrk 1994b] and [States and Gish 1994].

The single most important area where spccitlc aspects of gc.ms arc importan~ even to discov~ the

coding regionsi is comrol of gene expmssicMI.F*r. ~n~l of gem ~XPIWSSiOniS VUYC1OSC1Y

connected to product function. Thus, in addition to providing greater accuracy, bringing gene

identi.tication algorithms closer to models of underlying biological mechanisms will also bring

them closer to answering what is, in the encLthe more impottant questions: not just “Where arc the

genes in this squeawe?”, but “How do they determine the biochemistry of the cdl?”.
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Figure Legand

Figure 1.Derivability of mding measures. Each measure is derivable from any measure above it
andconnected to it by a line. The dotted line shows that the Fourier measure is csscntialiy
equivalent to, though not formallyderivable &m, the Autocordation measure.

41



Autocorrelation Run ORF Word Period 9 Dicodon& Hexarner-1,2

I
Fourier

Hexarner

I
Repeat Dinudeotide bias

Dinudeotide frame

Diamino

I
Codon I

Corn sition

A

Entropy Stabilityhydrophobidty

Codon prototype \
.

I
PositionAsymmetry


